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Abstract

With the rise of digitization and traffic, efficient route planning gains in importance.
Additionally, vehicles like drones are used for transportation. This requires more
enhanced and efficient routing algorithms. Apart from computing shortest paths,
the problem of alternative route planning plays an important role for route planning.
For the alternative route planning, other paths than the shortest paths should be
found and alternative routes should meet further criteria. The Penalty algorithm as
an algorithm for alternative route planning makes use of penalizing edges and aims
to retrieve high-quality alternative routes.
This work first defines a special case of alternative route planning, namely Ren-
dezvous Routing. As this work initiates the research for Rendezvous Routing, a
time complexity analysis is conducted and results in a weakly NP-hardness. Then,
the Penalty approach is evaluated whether it suits the requirements for Rendezvous
Routing. Improved variants of the Penalty approach for Rendezvous Routing are de-
veloped including a parameter discussion concerning quality of results and running
time.
The evaluation and the suitability study indicates that the Penalty approach can
be adapted for Rendezvous Routing and the developed algorithm(s) perform well
concerning running time and quality of an approximation for Rendezvous Routing.
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Zusammenfassung

Mit zunehmender Digitalisierung und steigendem Verkehrsaufkommen gewinnt eine
effiziente Routenplanung immer mehr an Bedeutung. Zusätzlich werden Fahrzeuge
und Luftfahrzeuge wie Drohnen vermehrt für den Transport eingesetzt. Dies er-
fordert verbesserte und effizientere Routing-Algorithmen. Neben der Berechnung
kürzester Wege spielt bei der Routenplanung auch das Problem der Alternativrouten-
planung eine wichtige Rolle. Für die alternative Routenplanung sollen andere Wege
als die kürzesten Wege gefunden werden und weitere Kriterien für Alternativrouten
erfüllt werden. Der Penalty-Algorithmus als Algorithmus zur Alternativroutenpla-
nung nutzt die Bestrafung von Kanten (Gewichtserhöhung) und zielt darauf ab,
qualitativ hochwertige Alternativrouten zu finden.
Diese Arbeit definiert zunächst einen Spezialfall der alternativen Routenplanung,
nämlich das Rendezvous-Routing. Da diese Arbeit den Grundstein für die Forschung
für das Rendezvous-Routing setzt, wird eine Zeitkomplexitätsanalyse durchgeführt,
die zu einer schwachen NP-Härte des Rendezvous-Routings führt. Anschließend wird
der Penalty-Ansatz daraufhin untersucht, ob er den Anforderungen des Rendezvous-
Routing entspricht. Verbesserte Varianten des Penalty-Ansatzes für das Rendezvous-
Routing werden entwickelt, einschließlich einer Parameterdiskussion bezüglich der
Qualität der Ergebnisse und der Laufzeit.
Die Evaluierung und die Eignungsstudie zeigen, dass der Penalty-Ansatz für das
Rendezvous-Routing angepasst werden kann und die entwickelten Algorithmen hin-
sichtlich der Laufzeit und der Qualität der Approximation für das Rendezvous-
Routing gut abschneiden.
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Introduction
CHAPTER 1

In a highly digitized world as we have today, digital route planning gains more and
more importance. As an example, Google Maps, as one of the most famous route
planners, has more than one billion users per month1. In contrast to the well-known
problem of computing a shortest path between a start and a target, the finding of
alternative routes does not necessarily aim to compute the k-shortest paths but also
tries to optimize other route parameters like overlapping of routes. There exist vari-
ous approximate and optimized algorithms in alternative route planning, computing
the k-shortest paths in a graph, which can be optimized for additional parameters
and adjusting edge weights dynamically [21, 6, 10, 5]. The alternative routes can
be restricted to meet some criteria, like maximum overlap with the shortest path,
maximum length of the alternative routes, and more.
In order to make the computation of alternative routes more efficient and more dy-
namic, alternative graphs (AGs) are used as an intermediate step. An AG results
from multiple alternative routes represented in an alternative graph. From the al-
ternative graph, a subset of routes can be selected as a solution to the alternative
route planning problem [21].
However, this work’s focus lies on a special case of alternative route planning called
Rendezvous Routing (RR). The RR problem is related to the problem of alternative
route planning: For RR, the solution only consists of two routes whereas, in general,
solutions for alternative route planning problems can contain multiple alternative
routes.
RR defines further constraints on alternative routes. Thus, various applications in
traffic routing and flight planning exist. An intuitive use case for RR is the transport
of money with two cars: in the first car, the money is transported. The second car
transports the key for the safe in the first car. Now, an optimal transport route
looks like this: the routes of the two cars do not overlap and both cars still arrive at
the destination at the same time with the same departure time without driving long
detours compared to the shortest route. The same situation holds for transports of
critical goods or emergencies.
Taking an alternative graph representation, the idea is to select a pair of candi-
date routes as a solution for RR. Therefore, possibly any existing algorithm from
alternative route planning could be used and adapted for RR. Nevertheless, the
Penalty approach is a highly customizable algorithm for alternative route planning,
as it requires various input parameters that define constraints on the alternative

1https://cloud.google.com/blog/products/maps-platform/9-things-know-about-googl
es-maps-data-beyond-map

https://cloud.google.com/blog/products/maps-platform/9-things-know-about-googles-maps-data-beyond-map
https://cloud.google.com/blog/products/maps-platform/9-things-know-about-googles-maps-data-beyond-map
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routes. The Penalty algorithm is a heuristic algorithm and aims to find alternative
routes meeting predefined criteria that are reflected in the input parameters of the
algorithm. This work provides an algorithmic evaluation of the Penalty approach
proposed by Kobitzsch et al. applied on RR, which will be introduced later [18]. In
addition, the time complexity of RR and the suitability of the Penalty algorithm for
RR are examined separately.

1.1 Problem Setting

A graph G = (V,E) in the context of this work is a directed and weighted graph.
The weights of the edges are defined as ω : E → R and are non-negative. A path
Ps,t from a source node s to a target node t is a sequence of vertices defined as
follows: Ps,t = 〈v0, v1, . . . , vl〉, where vi ∈ V and (vi, vi+1) ∈ E. The length L(Ps,t)

is the combined weights of the edges of the path, so L(P ′s,t) =
∑l−1

j=0 ω(vj, vj+1).
The shortest path between s and t is the path where the length is minimal over all
possible paths. The distance between s and t is defined as the length of the shortest
path [3, 18].

Taking the RR problem, more constraints on alternative routes are added. In the
RR, the goal is to find two paths from source to target which do not overlap and
are roughly of equal length. More formally, two paths Ps,t and P ′s,t which share
the same source s and the same target t have to meet the following optimization
problem for any path P and any path P ′ which should solve the RR problem for a
given source s and target t:

min(|L(Ps,t)− L(P ′s,t)|) (1)

Furthermore, sharing is not allowed (except for source node and target node):

L(Ps,t ∩ P ′s,t) = 2 (2)

Lastly, the two paths which solve the RR problem have to be of minimum length
concerning other pairs of paths. For any pair L(P ′′s,t) and L(P ′′′s,t) which meet
Condition (1) and Condition (2), another optimization has to be considered:

L(Ps,t) + L(P ′s,t) ≤ L(P ′′s,t) + L(P ′′′s,t) (3)

In addition, the complexity of algorithmic problems for route planning may change
whether or not repeating nodes in paths are allowed. For the RR problem, only
loopless paths are allowed for any path Ps,t:
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|{v|v ∈ Ps,t}| = L(Ps,t) (4)

Basically, the definition of the RR problem contains two optimizations, Condition (1)
and Condition (3) while also fulfilling Condition (2) and Condition (4). Together,
Condition (1), Condition (2), Condition (3), and Condition (4) define the RR prob-
lem.

1.2 Research Objectives

As the RR problem is a fairly new problem, this work is dedicated to cover basic
theoretical and practical research. Furthermore, the Penalty approach is one of the
central algorithms for this work. The idea of the Penalty algorithm is to penalize
edges laying e.g. on the shortest path. With the higher edge weights, a further
run of the Dijkstra algorithm on the penalized graph leads to possible alternative
routes. Additionally, constraints for the alternative routes are established and pos-
sible alternative routes are checked against these constraints. This work evaluates
if the Penalty approach fits the requirements for the RR problem and and how well
it performs concerning the RR problem. This substantiates the following questions:

1. What is the theoretical complexity of the RR problem?

2. Does the Penalty approach suit the requirements for the RR problem?

3. How well does the Penalty algorithm perform in approaching the RR problem?

Answering these questions results in a scientific contribution for basic research for
the RR problem and an evaluation of the Penalty approach including adjustments
of the algorithm. Adjusting the Penalty approach leads to various algorithmic vari-
ants. Furthermore, the analysis and evaluation of the Penalty approach emphasizes
strength and weaknesses of the algorithm in general and demonstrates obstacles for
solving or approximating the RR problem. Additionally, further algorithmic ideas
for RR are presented.

Thus, the following research tasks can be derived:

Task 1: Complexity analysis of the RR problem

Task 2: Suitability study of the Penalty approach for RR

Task 3: Implementation and experiments for evaluating the Penalty approach
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Task 4: Visualization and evaluation of the results from the experiments

Task 5: Deriving further research fields for RR

1.3 Outline

This work is divided into three different parts: analysis of RR, theoretic discussion
of the Penalty algorithm including a (practical) suitability study, and the experi-
mental evaluation of the Penalty algorithm applied on RR.
Chapter 2 summarizes related work, especially concerning the alternative route plan-
ning problem. Next, Chapter 3 explains the methodology used for the evaluation
and discussion of the Penalty approach. In Chapter 4, the time complexity of RR
is analyzed and proven. This is followed by a suitability study in Chapter 5 and
Chapter 6. In the suitability study, practical experiments are conducted in Chap-
ter 6 with a first implemented version of the Penalty approach. The goal of these
first experiments is to evaluate the practical suitability of the Penalty algorithm for
RR. Afterwards, improved variants of the Penalty algorithm are introduced in Chap-
ter 7 and experimentally evaluated in Chapter 8. This experimental evaluation and
the implemented algorithms are based on the experiments of the suitability study.
Finally, Chapter 9 concludes this work and gives an overview over future work.
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Related Work on Alternative Route Planning
CHAPTER 2

The following contains short summaries of references concerning the alternative
route planning problem in general and demonstrates the aspect-richness of the re-
search field.

Barth et al. [4] try to tackle the alternative route planning problem including multi-
dimensional weight functions for edges. Especially the obstacle of self-driving cars
and route selection dominates their work. The main idea of the approach is to enu-
merate possible routes from a source to a target by considering the multi-dimensional
costs/weights. In addition, the individual cost components can be adapted concern-
ing their importance by adding a request-individual importance function. In order
to get more diverse alternative routes, the authors suggest to introduce additional
metrics (apart from travel time etc.) such that the alternative routes provide suffi-
cient diversity. To achieve the diversity constraint and sufficient performance, the
authors make use of a convex hull computation. Afterwards, the path selection can
be computed more efficiently. The experimental results of the authors show that
processing of a whole country is possible within a few seconds and preserving quality
of the alternative routes at the same time [4].

Stroobant et al. [23] explore another problem in the world of alternative route plan-
ning. They constraint the routes not only to a maximum length (upper bound)
but also to a lower bound. The problem is shown to be strongly NP-hard if the
aim is to find the shortest route considering the lower bound. Two algorithms are
provided that solve the problem correctly. As the running time is not applicable for
longer routes, a heuristic approach is developed by the authors. The heuristic makes
extensive use of penalization of edges by taking an intermediary point to calculate
a bicycle tour. In summary, the experimental results show that the quality of the
tours seems to be good and the running times are reasonable for small real-world
applications [23].

The work of Bader et al. [3] is motivated by the still existing obstacle of finding
alternative routes that match the idea of human beings. Similar to the penalty
approach, an alternative graph is used for better route extractions. The alternative
graph can be computed by an approach like Penalty, Plateau, k-shortest path algo-
rithm, or a combination of them. In order to extract the routes of the alternative
graph, heuristics can be used. The authors suggest two new heuristics, Global and
Local Thinout. The idea is to remove useless edges globally (the whole path) or
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locally (for an edge). Furthermore, attributes of such an alternative graphs are de-
fined (totalDistance, averageDistance, and decisionEdges). These attributes make
it possible to remove useless edges with the Global and Local Thinout. Thus, the
result is an optimized alternative graph where routes can be extracted. The exper-
imental results and a user study show that the Penalty approach and the Plateau
approach perform well for alternative routes and match the ideas of human beings
better than other approaches [3].

Feng et al. [11] extend the Plateau method for alternative route planning with the
concept of pheromones in traffic. First, the Plateau approach grows two trees from
a source to a target: a forward and a backward tree. Taking the overlap of both
leads to a list of nodes of a Plateau. Every node of the Plateau can now be included
in a path from the source to the target. Various methods and improvements exist
for selecting good Plateau nodes. Introducing the concept of pheromone in traffic
as the authors in [2] did, could lead to better alternative routes for road maps.
Furthermore, pheromone in the context of traffic can be seen as the density of traffic.
The pheromone metric influences the computation of an alternative graph and the
alternative routes such that the plateaus list is sorted in increasing order concerning
the amount of pheromone. Additionally, the nodes in the plateau should lay on the
main road network. The main road network is defined as the network including the
main traffic routes. The experimental results indicate that the proposed algorithm
and the heuristics seem to be better concerning quality of results compared to other
approaches [11].
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Methodology
CHAPTER 3

This section introduces the Penalty approach of Kobitzsch et al. and further work
on alternative route planning namely a promising alternative algorithm proposed by
Chondrogiannis et al. [6]. As there exist many work on alternative route planning,
this section focuses on relevant work for the evaluation of the Penalty approach.
Afterwards, the methodology used for this work is explained.

3.1 Penalty Approach

The following summarizes the proposed algorithm of Kobitzsch et al. [18]. The
Penalty algorithm will be evaluated in the upcoming sections.
The work of Kobitzsch et al. proposes an approach for alternative route planning
on (directed) graphs, based on the work of Bader et al. [3]. As various methods
for alternative route planning exist, the main contributions of the approach of Kob-
itzsch et al. are the almost real-time processing of an entire graph using a dynamic
level selection technique, and the improvements of the original penalty algorithm.
First, the idea of the penalty approach of Bader et al. is to penalize arcs of a short-
est path as long as alternative routes can be found. The iterated computation of
the shortest path between a source and a target is performed on the alternative
graph which results from the penalization of arcs. While finding alternative routes,
each possible alternative route is checked against three criteria: limited sharing,
uniformly bounded stretch, and local optimality1.
Furthermore, small hops in the alternative route compared to the shortest path
are avoided by penalizing not only edges on the current found path but also edges
connected to nodes of the current found path. Each penalization of different types
of arcs is parametrized and can thus be adapted to get better results. Another
improvement introduced by Kobitzsch et al. is the overall converging criterion. It
is defined by the length of the current found path and the length of the shortest
path using an additional input parameter. Further changes to the penalization are
motivated by fulfilling the local optimality criterion and optimizing running time.
The authors propose values for the input parameters mainly based on experimental

1Limited sharing implies a restricted overlap of the possible alternative route and the shortest
path. The criterion of a uniformly bounded stretch defines the maximal length between pairs
of nodes of the alternative path and thus restricts the length of alternative paths. Sub-paths
of predefined maximum lengths of the alternative paths have to be optimal, which is reflected
in the local optimality criterion.
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results.
One of the most important contributions of the paper, besides the improvements for
the algorithm itself, is to apply a dynamic level selection technique. Therefore, the
original graph is hierarchically decomposed to get a multi-level graph. Finding the
shortest path on the graph (including penalties) can be performed using a dynami-
cally selected search level. Additionally, updates of arcs in the penalization steps are
performed on different levels leading to a balancing problem between update costs
and runtime costs for the shortest path queries. The authors suggest experimentally
evaluated hierarchy levels depending on the length of the shortest path.
In summary, the penalty approach as introduced by Kobitzsch et al. in combina-
tion with the dynamic level selection technique seems to be sufficient in quality and
performance for real-time dynamic route finding applications (based on the experi-
mental results of the authors).

3.2 k-Shortest Paths with Limited Overlap

Chondrogiannis et al. introduce the k-Shortest Paths with Limited Overlap (kSP-
wLO) problem as a closely related definition to RR [6]. The outcomes of the paper
are summarized and explained in a more detailed way. First, the authors define a
similarity measure for alternative paths by calculating a similarity ratio taking the
overlap of two paths divided by the length of the shorter path into account. The
parameter k refers to the number of alternative paths that have to be found by the
algorithm. Additionally, the proof for the kSPwLO problem to be weakly NP-hard
is provided. This proof is also used in this work to show that the RR problem can be
reduced to the kSPwLO problem (see Chapter 4). In their work, Chondrogiannis et
al. provide various algorithms for exactly solving kSPwLO and heuristic algorithms.
For the heuristic algorithms, the definition and criteria of kSPwLO are adapted such
as alternative paths do not have to be as short as possible. Consequently, the heuris-
tic approaches do not give any guarantee concerning the lengths of the alternative
paths.
Even though the experiments are conducted using advanced implementations and
hardware, the running times of the heuristic approaches highly depend on the in-
put parameter k. Furthermore, the higher the dissimilarity, the higher the running
time. Nevertheless, the authors provide well-performing heuristic algorithms for the
kSPwLO problem. Figure 1 gives an overview over datasets used by the authors to
measure the performance of the algorithms.
In order to extract some indications for the later evaluation in this work, Figure 2
presents the running times of two heuristic approach for different datasets. It is
quite intuitive that for increasing parameter k the running times get also higher as
the finding of alternative paths is an iterative process.
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Figure 1 Datasets used by Chondrogiannis et al. to estimate the performance of their
algorithms. Table taken from [6].

Figure 2 Running times of two heuristic approaches in dependence of parameter k. Figure
taken from [6].
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Figure 3 Running times of two heuristic approaches in dependence of parameter θ. Figure
taken from [6].

In addition, Figure 3 shows the running times in relation to changes of the similarity
θ of alternative paths. In general, it can be seen that the more similar the alternative
routes can be the lower the running times. The observations from Chondrogiannis et
al. are used in the evaluation section to provide a comparison of different approaches.

3.3 Procedure

In order to extensively evaluate the RR problem and possible approximations, the
methodological approach in this work includes the following steps:

1. Proof of weak NP-completeness of Rendezvous Routing

2. Theoretical discussion of Penalty approach including running time and quality
of alternative routes

3. Practical evaluation and discussion of the Penalty approach including running
time and quality of alternative routes
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4. Improved Penalty algorithm for Rendezvous Routing: Optimized version of
Penalty algorithm for running time and quality evaluation

Step 2 and 3 can be summarized in a suitability study in order to evaluate whether
the Penalty approach meets the requirements for RR. The last step takes the results
from the previous steps into account, followed by an extensive evaluation of the
implemented improved algorithm. Furthermore, speed-up techniques like a bidirec-
tional Dijkstra variant and Contraction Hierarchies are applied.
The evaluation of the Penalty approach includes measuring the route quality. There-
fore, a pair of routes is compared by their dissimilarity, the length difference of the
routes and the overlap length. In addition, the length of the larger path in com-
parison to the shortest path between a source and a target completes the quality
measurement of a pair of routes.
In order to gain better insights about the running time, the running time of sub
parts of the algorithm are measured separately. This enables an enhanced analysis
of possible points for improvements.
The algorithms are implemented and evaluated in Java 11. In addition, roughly 50
Gigabyte of RAM are given to the application for the experiments operating on an
AMD Ryzen 7 3700X processor. The graph for the metrics is a real-world road map
consisting of about 100 000 nodes.



12

Time Complexity
CHAPTER 4

Chondrogiannis et al. provide a proof for the weakly NP-hardness of kSPwLO (see
Section 3.2). The following sketches the idea of the proof. Furthermore, the proof
for RR to be weakly NP-hard is introduced.

Chondrogiannis et al. reduce the subset sum problem to kSPwLO. For the subset
sum problem, index-based natural numbers are given: a1, . . . , am ∈ N, S ∈ N. The
problem asks for an index set I ⊆ {1, . . . ,m} such that

∑
i∈I
ai = S.

Figure 4 Fixed instance for subset sum problem represented in a graph. Figure taken
from [6].

The idea of the proof is to fix an instance of the subset sum problem and transform
it in a graph as shown in Figure 4. The kSPwLO aims to find two paths for that

instance with a limited overlap of S
A
. Furthermore, M > A =

m∑
i=1

ai. So M must be

greater than A, otherwise the overlap for the kSPwLO problem could not be satis-
fied. In order to conduct the reduction, there has to be an index set I ⊆ {1, . . . ,m}
with

∑
i∈I
ai = S if and only if L(P2 = A ·M − S · (M − 1) where P2 is the second

path found by kSPwLO. It can be clearly seen by Figure 4 that such a path has to
exist as the shortest path and P2 can be edge-disjoint (〈n0, n

′
1, . . . , n

′
m, nm〉).

In addition to the constraint that the paths of RR have to be completely dissimilar
(Condition (2)), Condition (1), and Condition (3) add more constraints on the
lengths of the paths for RR compared to kSPwLO. As P2 can be chosen to be
completely edge-disjoint, the dissimilarity criterion does not change the proof for
the weakly NP-hardness of RR. For Condition (1), the condition is already included
in the definition of kSPwLO as the alternative paths have to be of minimum length.
Additionally, Condition (3) (minimum difference of pair of paths) does not change
the proof above neither. In order to find the optimal solution for Condition (3), it is
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necessary to enumerate all possible alternative paths and find the pair that minimizes
the length difference of all pair of paths. Therefore, the weakly NP-hardness holds.
As Condition (3) could be a conflicting criterion with Condition (1), it requires to
e.g. define a prioritization and/or length limit here. Nevertheless, this optimiza-
tion criterion can only be fulfilled if all paths are enumerated and all pairs of paths
are compared to each other. Therefore, this criterion does not change the proven
time complexity. Lastly, Condition (4) (no repeating nodes in paths) is indirectly
included in the definition of kSPwLO as we assume that all edge weights are non-
negative. This leads to acyclic shortest paths.
Thus, all (additional) criteria do not change the proof and therefore the time com-
plexity. This shows that the RR problem is also weakly NP-hard. As exact algo-
rithms are not efficient for the RR problem and bounded approximation algorithms
are not known, heuristic algorithms may be designed for real-world use cases.
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Theoretical Suitability
CHAPTER 5

In Chapter 4, we have shown that the time complexity for the RR problem does not
allow efficient exact algorithms. Next, the suitability of the Penalty approach for
RR is evaluated. The first part approaches the Penalty algorithm from a theoretical
perspective while the second part conducts a practical suitability study. In addition,
the methodology for the suitability study is briefly explained.

The following study examines the Penalty approach generally concerning possible use
cases. In addition, places for improvements in the Penalty algorithm are identified
for later use.

5.1 Methodology

As a first step, the theoretical discussion of the Penalty algorithm is based on a
running time discussion and a quality discussion. As the Penalty approach is a
heuristic to a good solution, bad running times as well as bad quality of the routes
are possible. The quality of alternative routes can be measured by how good a route
performs according to the input parameters and other alternative routes. Further-
more, the comparison to the shortest route can also be a measurement of quality of
routes.

Secondly, the elaboration of use cases is based on the theoretical discussion in the
first part. Use cases are extracted from related work and evaluated for the Penalty
algorithm. In particular, "good" and "bad" use cases are extracted and provided
that show the strengths and weaknesses of the Penalty approach. Bad use cases are
the ones where the running time of the Penalty algorithm is bad or the the quality
of the routes is low. If a use case fits both criteria, running time and quality, it is
considered to be a feasible application.

5.2 Algorithm Discussion

This section first gives more formal definitions for alternative route planning and the
Penalty approach, focusing on the algorithm itself and the improvements suggested
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by Kobitzsch et al. This is followed by a closer running time and quality discussion.
Furthermore, examples demonstrate the running time and quality of the Penalty
algorithm.

5.2.1 Background

In order to specify the criteria for evaluating routes in the Penalty approach, the
definitions of limited sharing, uniformly bounded stretch and local optimality are
introduced. There, D(a, b) is denoted as the length of the shortest path between a
and b. Taking a shortest path Ps,t between s and t, the shortest path Ps,v,t where
v ∈ V \Ps,t is a so-called Via-Node Alternative Route. As such via-node alternatives
can be arbitrary bad, the aforementioned definitions are introduced. If all these cri-
teria are fulfilled for the parameters γ, ε, α, v, the alternative route is called viable.
The formal definitions can be summarized as follows: [1, 18]

1. L(Ps,t ∩ Ps,v,t) ≤ γ · D(s, t)

2. ∀a, b ∈ Ps,v,t,DPs,v,t(s, a) < DPs,v,t(s, b) :

DPs,v,t(a, b) ≤ (1 + ε) · D(a, b)

3. ∀a, b ∈ Ps,v,t,DPs,v,t(s, a) < DPs,v,t(s, b),

DPs,v,t(a, b) ≤ α · D(s, t) : DPs,v,t(a, b) = D(a, b)

Kobitzsch et al. suppose a slightly improved and adapted version of the Penalty
algorithm proposed by Bader et al. [18, 3]. The algorithm is summarized in Algo-
rithm 1.

Algorithm 1 Penalty
Require: Input graph G, source s, target t, γ, ε, α, πf
1: original_path = path = computeShortestPath(G, s, t)
2: H = {original_path}
3: G′ = G

4: while L(path) ≤ (1 + ε) · L(original_path) do
5: applyPenalties(G′, path, α, πf )
6: path = computeShortestPath(G′, s, t)
7: if isFeasible(path) then
8: H = H ∪ path
9: end if
10: end while
11: return H

It remains to clarify the functions mentioned in Algorithm 1.
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• computeShortestPath is just an invocation of the (bidirectional) Dijkstra algo-
rithm in order to simplify the discussion. Clearly, the Dijkstra algorithm can
be replaced by any other shortest path algorithm.

• applyPenalties applies penalties to the current found shortest path as well as
to (incoming) edges of nodes lying on the current found path. πf indicates the
factor by how much the edges on the current shortest paths are penalized. The
new weight of an edge i laying on the current found shortest path is calculated
by ωpi = ωpi+ωpi ·πf , where ωpi is the current weight of edge i in the penalized
graph G′. α ·

√
D(s, t) is the factor added to the edge weights of edges of the

current found shortest path. Penalties are not applied to edges incident to the
source or target node as it would not make any difference to the algorithm
(especially for the target node). Penalizing incoming edges, outgoing edges,
or both of nodes of the current found path depends on the problem we want
to tackle. Applying penalties only to incoming edges of nodes lying on the
current found path is neither particularly specified in the paper of Kobitzsch
et al. nor in the work of Bader et al. Nevertheless, penalizing incoming edges
and thus avoid to go back to a previous found path again, makes sense in an
intuitive way. Not penalizing outgoing edges would help to get away from a
previously found path. Figure 5 illustrates the penalizing of only incoming
edges after computing the shortest path on the original graph. As the incident
edges of the source and target node are not penalized, the edge between node
a and node c is the only penalized edge apart from the edges of the shortest
path.

• isFeasible verifies if a given alternative route fulfills the first (limited sharing)
and second (uniformly bounded stretch) condition. Thus, for checking the
uniformly bounded stretch, pairwise distance calculations are necessary and
highly influence the running time of the algorithm.

Figure 5 Example of penalizing incoming edges of nodes of the shortest path with ε > 0.
The shortest path from s to t is marked blue and the penalized edge in the
invocation of the while-loop in algorithm Algorithm 1 is marked red.
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Figure 6 Penalty algorithm after finishing with the following parameters: ε = 0.5, πf =
0.04, α = 0.5, γ = 0.1 from node s to t. The blue path indicates the shortest
path on the original graph and the red one the alternative route.

Remark: Algorithm 1 could end up in an endless loop if there is e.g. only one path
from source to target. Then the condition in the while loop will never be false. To
avoid this, an additional check inside the while loop could solve the problem. In this
check, the length of the current found path in the penalized graph G′ is examined
whether it is too long. If this path gets too long (e.g. the length of the path including
penalties does not fulfill the condition of the while loop), one can end the loop.

5.2.2 Running Time Discussion

Analyzing the running time of the Penalty algorithm highly depends on the number
of invocations of the shortest path search and number of rounds in the while loop.
Figure 6 shows an example of an efficient run of the Penalty approach. Whether or
not a run of the Penalty approach is efficient depends on the structure of the graph
and the input parameters. Decreasing ε in the example in Figure 6 would lead to a
missing alternative route. Increasing ε can lead to an arbitrarily bad running time.
An option to avoid such overhead in running time could be to limit the paths we
search for. This requires further information on the problem we try to solve and the
graph itself. In addition, for this example ε is the parameter that mainly influences
the quality and running time of the algorithm. πf = 0.04 and α = 0.5 remain the
same throughout this discussion as suggested by Kobitzsch et al. as an outcome of
their practical evaluations. As there is no path overlapping in Figure 6 apart from
the source and target node (like in RR), the parameter γ is not relevant.
Taking the example in Figure 7, the running time of the Penalty algorithm is not
good. Although there exists only one path from source s to target t, the algorithm
requires at least O(n2) invocations of the shortest path algorithm caused by the
feasibility check of the alternative route s → a → b → c → d → t where n

is the number of nodes in graph G. This route will then be added to the result
set after performing the feasibility check. This results in at least a cubic running
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Figure 7 Penalty algorithm after the first round with the following parameters: ε =
0.2, πf = 0.04, α = 0.5, γ = 0.1 from node s to t. The blue path indicates the
shortest path on the original graph.

time. Choosing ε > 0 would also result in unnecessary shortest path calculations
computing the same shortest path again and again. The number of steps needed for
the criterion of the while loop in Algorithm 1 to return false or to meet some other
stopping criterion depends on the parameter πf . As mentioned before, Kobitzsch et
al. suggest a specific value (πf = 0.04) which seems to work well for road networks.
In addition, the rejoin penalty parameter is chosen as suggested: α = 0.5.
Additionally, γ can highly influence the running time. If the overlap of the routes
is bounded to small overlapping parts or no overlap like in RR, it could be more
efficient than allowing high overlaps as the check for the overlap is more efficient than
checking the uniformly bounded stretch. Nevertheless, sparse graphs might perform
better for a sensible choice of the input parameters. If a graph is more dense, it
could probably result in more feasibility checks and more different candidate routes.
Summarizing the outcomes of the examples, the running time depends on the follow-
ing factors: choice of parameters, structure of graph (sparse versus dense), number
of paths to be found, and the number of nodes of the found paths. The number of
nodes of a found path influences the running time because of the time the feasibility
check needs. The choice of parameters should depend on the structure of the graph.
Figure 7 illustrates this case.
For RR, γ can be fixed to γ = 0. But for some input parameters like number of
paths to be found, α, and ε, various values can be set. Nevertheless, a trade-off
between running time and quality of routes is essential.

5.2.3 Quality Discussion

Elaborating the quality of the routes calculated by the Penalty algorithm, Figure 8
is an example of good quality routes concerning the input parameters. For this
example, ε is the threshold of how many routes can be found. In addition, γ can
restrict the length of the part of routes they are allowed to share. Taking the input
parameters ε and γ, the Penalty approach finds the optimal solution in Figure 8.
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Figure 8 Penalty algorithm after finishing with the following parameters: ε = 0.5, πf =
0.04, α = 0.5, γ = 0.1 from node s to t. The blue path indicates the shortest
path on the original graph, the dashed and dotted paths the alternative routes.

Figure 9 is another example where the Penalty approach finds the optimal solution
given the input parameters. In this case, it may not be clear why the Penalty
approach succeeds in finding the dark dashed route. After finding the shortest path,
edge a → c is punished more than one time. Afterwards, the red dashed route is
found as the first alternative. Then, the dark dotted route is found. Edge c→ b is
now punished several times. Now the shortest path on G′ including the penalties is
exactly the dark dashed route. The path s → a → c → t is not found thanks to
penalties of the edge a→ c.

Figure 9 Penalty algorithm after finishing with the following parameters: ε = 0.5, πf =
0.04, α = 0.5, γ = 0.6 from node s to t. The blue path indicates the shortest
path on the original graph, the dashed and dotted paths the alternative routes.

In contrast to the previous examples, Figure 10 indicates an inconsistency concerning
the parameters. γ = 0.6 indicates that more routes can be found while ε = 0.2

restricts the overall length. Setting ε >= 1
3
would lead to more alternative routes

fulfilling the restriction of γ. Nevertheless, the algorithm would not miss any routes
here if the parameters were set differently.
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Figure 10 Penalty algorithm after finishing with the following parameters: ε = 0.2, πf =
0.04, α = 0.5, γ = 0.6 from node s to t. The blue path indicates the shortest
path on the original graph and the green dashed one the alternative route.

Summarizing the outcomes of the examples concerning the quality of routes, the
Penalty approach works fine if the parameters are chosen accordingly. Missing routes
depends on the input parameters, especially on the penalty factors. Choosing the
penalty factors arbitrarily small, the Penalty approach will never miss a route. As it
is a trade-off between quality and running time, an inconvenient parameter setting
leads to a bad trade-off, especially for RR.

5.3 Evaluation

This section evaluates the Penalty algorithm regarding its applicability and suitabil-
ity for real-world examples. Furthermore, the previous discussion of running time
and quality of routes is elaborated for further use cases. In addition, bottlenecks of
the algorithm identified in the previous running time discussion are tried to over-
come with various improvement suggestions.

The variety of input parameters makes it possible to have a relatively generalized
algorithm design but also makes it harder to specialize the algorithm for specific
use cases. Especially the finding of adequate values for the input parameters can be
based on some theoretic assumptions but it is more an experimental task [18, 3].

Adapting the Penalty algorithm to other problems leaves the specification of the
input parameters, especially γ and ε. A good and convenient way reaching this goal
are practical experiments knowing the exact problem definition and the graph data
to operate on. Furthermore, theoretical assumptions on the graph like maximum
degree of the data to operate on can help to provide well-working parameters. The
experiments made by Kobitzsch et al. are performed on various graph data. This
leads to a reliable parameter setting of the penalty factors concerning the quality of
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the resulting routes and the alternative graph based on the experiments.
Approaches to critical problems like route planning of self-driving cars should not
be optimized at the cost of missing alternative routes. Therefore, it would be more
important tackling the running time bottlenecks of the Penalty approach. For less
critical problems, the running time can be improved by e.g. increasing the penalty
factors. As γ is fixed in the RR problem, experiments can focus on e.g. ε to find a
good trade-off between running time and the number of alternative routes.

5.3.1 Use Cases

Based on the theoretical discussion, the Penalty approach is suited for use cases
where alternative routes are necessary that provide somehow real alternatives. Real
alternatives mean that the routes do not differ by small detours but differ in longer
contiguous parts. Depending on the underlying problem to solve, routes that share
same parts are not a strength of the Penalty algorithm. The penalization of edges
intuitively leads to routes that share only small parts or nothing.
RR as a use case or application of the Penalty approach demands a practically eval-
uated parameter setting in order to find interesting alternative routes on the one
hand and reach a good running time on the other hand.

Furthermore, another use case is the planning of routes for drones that fly on the
same height. There it is essential to have non-overlapping routes for drones with the
same or similar start and end points. As mentioned above, routing of self-driving
cars and balancing the amount of cars at a certain road could also lead to the ne-
cessity of non-overlapping or nearly non-overlapping routes.

A further use case that is expected to not work well with the Penalty approach is
an additional lower-bound constraint. This use case is not expected to be solved
efficiently by the Penalty approach without further adjustments. Complex overlap-
ping constraints could also be hard to implement with the Penalty approach without
loosing performance in running time.
The following gives a brief overview of possible improvements or where improvements
are necessary.

5.3.2 Improvement Suggestions

Kobitzsch et al. as the authors of the improved Penalty approach suggest to use the
Penalty approach as a speed-up technology for alternative route planning applying
Dynamic Search Levels. Apart from that, the algorithm itself can and should be
optimized and improved. First, the shortest path computation is restricted to basic
algorithms, as dynamic edge weights require more advanced preprocessing schemes,
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e.g. Customizable Contraction Hierarchies. For an advanced preprocessing scheme
it would remain to clarify whether the additional effort for the preprocessing en-
ables good speed-ups in total. Nevertheless, whenever performing a shortest path
calculation on the original and not penalized graph (e.g. in the feasibility check),
Contraction Hierarchies as a speed-up technique can be used. Basic performance
improvements like using a bidirectional variant of the Dijkstra algorithm are also
proposed in the paper by Kobitzsch et al. In general, parallelization can highly im-
prove the running time. In a first step, the feasiblity checks can be fully parallelized
as the graph is not modified. In addition, the check for the uniformly bounded
stretch can itself be parallelized.

There are two more factors that mainly influence the running time: the number of
steps until the convergence criterion is fulfilled and the uniformly bounded stretch
check in the feasibility check. While the first one can be regularized with the input
parameters and some knowledge of the underlying graph, the second one should be
optimized. Besides the parallelization, a simple but efficient variant is to check only
every ks time for the stretch condition. If k is determined depending on the length
of the shortest path, it is more likely to not miss an unsatisfied stretch condition.
Another possibility to estimate the distance between two points is to get an upper
bound with another via-node probably not laying on the part of the path one wants
to estimate. This situation is shown in Figure 11, where l1 and l2 are landmarks
with precomputed distances to all nodes. The necessary preprocessing of the origi-
nal graph and the selection of landmarks is done equivalently to the ALT algorithm
[14]. This results in the following upper bounds: d(u, v) ≤ d(u, l) + d(l, v) where
d(s, t) is the length of the shortest path between s and t and l is a landmark. Taking
the minimum over all landmarks leads to the tightest upper bound. We can also
compute lower bounds by taking d(u, v) ≥ d(u, l)−d(v, l). Computing the maximum
over all landmarks gives the tightest lower bound. The upper and lower bound can
be used to decide whether it is necessary to check the uniformly bounded stretch
condition exactly using exact shortest paths or discard the route without computing
the shortest paths.
Further speed-up techniques like estimating shortest paths more efficiently like sug-
gested by Gubichev et al. or pruning could also improve the running times [15, 19].

Figure 11 Illustration of bound estimation of shortest paths. In order to estimate the
distance between u and v, the precomputed distances to the landmarks are
used.
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5.4 Summary

From a theoretical point of view, the Penalty algorithms is well-suited for RR.
Adapting input parameters like γ = 0 intuitively leads to a possible algorithm for
RR. The clear structure of the algorithm makes it possible to optimize and adapt
parts of the algorithm. Furthermore, existing speed-up techniques can be directly
applied in the algorithm and thus improve running times. Additionally, the route
quality can be highly influenced by the input parameters and therefore be optimized
for RR.
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Practical Suitability
CHAPTER 6

In the following section, a first version without advanced improvements is imple-
mented and evaluated. As already done in the theoretical suitability part, running
time and quality of routes are evaluated. If not stated otherwise, running times are
given in milliseconds and distances in meters (relevant for figures and tables).

6.1 Methodology

First, a frontend-backend architecture is taken to implement the algorithm and prop-
erly visualize it. Especially for measuring metrics, the overall running time of the
algorithm is not of high importance. Thus, concurrency has not to be considered.
Nevertheless, the running times give a hint of how suitable the Penalty approach is
for real world applications like RR.
Second, the backend is able to track different metrics which are then evaluated using
data visualization methods. The main metrics are difference in path lengths, over-
lap, running time, running time for path feasibility, and the feasibility optimization
parameter including its influence to running time. Furthermore, good and bad ex-
amples of routes and their alternatives are visualized using the frontend.
Together, the setup allows an evaluation of the Penalty approach specifically for the
adaptability to the RR problem.

6.2 Implementation

The architecture and design of the implementation is introduced in the following
parts.

6.2.1 Design Decisions

A backend-frontend architecture is used for the overall setup of the system. Fur-
thermore, various design decisions for the algorithm itself are highly important and
thus implemented. First, the penalization of edges along the current found path are
only performed on incoming edges of nodes of the path. This is plausible due to the
fact that the aim of penalizing edges not laying on the path is to avoid hops. As
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the edges on the path itself are strongly penalized, it is sufficient to penalize only
incoming edges of nodes of the path.
Next, wherever possible, sets and maps are used for fast access. Concerning running
time and performance, concurrent executions are not supported. It would be pos-
sible to e.g. perform the validation and feasibility of paths concurrently and speed
that part up.
As the RR problem requires no overlap, the parameter for overlap (γ) is adapted.
This results in higher running times. Thus, the feasibility checks are adapted using
an additional parameter skip_feasible. skip_feasible indicates how many nodes shall
be skipped while checking the stretch condition to avoid hops (instead of pair-wise
checking).
Additionally, for the evaluation only the shortest path and the first alternative path
are considered and evaluated. This leads to more realistic running times without
concurrency. Furthermore, this reflects the complexity and balancing between Con-
dition (1) and Condition (3).
Lastly, a bidirectional version of Dijkstra is used to find the shortest path between
two nodes. This optimization results in notably better running times.

6.2.2 Backend

Java 11 in combination with Spring Boot is the framework used in the backend. It
provides relatively easy and convenient ways to build REST controllers. Various
endpoints for simply calling the Penalty algorithm but also for calling the metric
endpoint exist. The metric endpoint outputs a CSV file containing multiple runs of
the Penalty algorithm. Furthermore, Spring Boot enables user authentication and
thread handling 1.
Controller, services and util classes like graphs build the architecture of the backend.
In addition, the methods in the services have a test coverage covering all relevant
cases and edge cases of the Penalty approach and the Dijkstra implementations. For
this purpose, a test graph, which consists of 10 nodes and 9 edges, is used.

6.2.3 Frontend

The frontend is completely written in plain Javascript. In addition, it is mainly
responsible for representing the results of the Penalty algorithm. Visualizing the
paths is done with Leaflet 2 in combination with jQuery 3 and Bootstrap 4. The
frontend calls the backend using REST requests.

1https://spring.io/projects/spring-boot
2https://leafletjs.com
3https://jquery.com
4https://getbootstrap.com

https://spring.io/projects/spring-boot
https://leafletjs.com
https://jquery.com
https://getbootstrap.com
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6.3 Experimental Evaluation

The following evaluates the results from the metrics of the Penalty implementation.
First, the running time of the implementation is examined. Second, the quality of
the resulting paths is analyzed.

6.3.1 Running Time Discussion

Figure 12b indicates the impact of the skip_feasible parameter on the running time
of the feasibility check. The absolute gain from skip_feasible = 0 to skip_feasible =
10 is very high concerning the running time. Therefore, Figure 12a and Figure 12b
emphasize the importance and impact of the feasibility check and the skip_feasible
parameter.
Next, Figure 13, Figure 14 and Figure 15 provide insights about the running times
in relation to the length of the shortest path. It is clearly visible that there exists
a coherence between the length of the paths, the running time of the algorithm
(Figure 14 and Figure 15) and the feasibility check (Figure 13). It could probably
be a linear correlation, which would be a valid finding based on the design of the
algorithm. Figure 16 represents the running time similar to Figure 12a but removing
all results where no alternative paths were found. It seems that the running times
are shorter when removing the results where only the shortest path was found. This
could point to the necessity of a slight improvement of the converging criteria in the
Penalty approach.
As the discussion above indicates, the running time of the Penalty approach mainly
depends on the feasibility check. The feasibility check itself, especially checking for
local optimality, is expensive and can be optimized. In order to get an overview for
future work, the following part gives a better intuition of how great the impact of
the current optimization using skip_feasible is.
Figure 17a allows more insights into the amount of running time required by the
feasibility check in relation to the number of feasibility checks per run of the Penalty
approach. Figure 17b shows the amount of running time the feasibility check requires
related to the skip_feasible parameter. Altogether, one feasibility check takes a sig-
nificant amount of time concerning the total running time. Concluding, the impact
of the skip_feasible parameter is also highly important and should be considered for
later improvements.
The Parallel Coordinates Plot (PCP) in Figure 18 provides a good representa-
tion that emphasizes the findings from above concerning e.g. the impact of the
skip_feasible parameter. Additionally, it can be seen that most of the running
times are below 10000ms. Further, the PCP using curved lines shows that there are
not many outliers e.g. for the running times. Thus, the previous evaluation of the
running times seems to hold for this data.
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(a) Average running time of the Penalty algorithm depending on skip_feasible. The y-axis repre-
sents the average running time in milliseconds and the x-axis the skip_feasible parameter.

(b) Average running time of the feasibility check related to skip_feasible. The y-axis represents
the average running time in milliseconds and the x-axis the skip_feasible parameter.

Figure 12 Figures representing the running time of the Penalty algorithm.
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Figure 13 Average running time of the feasibility check depending on the length of the
shortest path. The y-axis represents the average running time in milliseconds
and the x-axis the length of the shortest path in meters.

Figure 14 Average running time depending on length of shortest path. The y-axis repre-
sents the average running time in milliseconds and the x-axis the length of the
shortest path in meters.
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Figure 15 Average running time of the algorithm depending on the number of nodes of the
shortest path. The y-axis represents the average running time in milliseconds
and the x-axis the number of nodes.

Figure 16 Average running time depending on skip_feasible but removing all results
where no alternative route was found. The y-axis represents the average run-
ning time in milliseconds and the x-axis the skip_feasible parameter.
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(a) X axis: percentage of feasibility check for total running time. Y axis: Number of feasible
checks.

(b) X axis: percentage of feasibility check for total running time. Y axis: skip_feasible parameter.

Figure 17 Figures representing the running time of the feasibility check and the impact
of the skip_feasible parameter.
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Figure 18 Parallel Coordinates Plot of metric data.

In summary, the overall running times without the usage of concurrency are good
and there are many possibilities for improvements of the running time through con-
currency and the feasibility check. With the current implementation, the duration
of the feasibility check and thus the overall running time depends highly on the
skip_feasible parameter. Additionally, the converging criterion for requests where
no alternative routes are found is probably not sufficient in order to provide the
same running times as for requests where at least one alternative route exists.

6.3.2 Quality Discussion

Apart from the running time discussion, the quality of the outcoming paths has to
be considered as well. In the current setup for the metrics, the shortest path and the
first alternative route are compared. Examining the length differences of the two
paths gives a first insight of the quality. Comparing the differences relative to the
length of the shortest path, the outcome of Figure 19 indicates that the quality of the
results are satisfying. In fact, most of the alternative paths are less than half times
longer than the shortest path. For the RR problem and especially Condition (1),
the results could be better but are a good starting point.
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Figure 19 Plot showing the length differences of the found paths in relation to the length
of the shortest path. The x-axis represents the length difference and the y-axis
the length of the shortest path in meters.

In order to demonstrate good and bad examples of results of the Penalty algorithm,
Figure 20 presents a very good result where the difference of the shortest path and
the alternative is pretty low. In the following figures, the red path represents the
shortest path and the blue paths stand for alternative routes.

Figure 20 A good example for the RR problem. Setting: source=100022, target=75014,
ε = 1, γ = 0, α = 0.5, πf = 0.04, number of paths = 2, skip_feasible = 100.
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As an example where the algorithm has not performed well, Figure 21 shows a very
long detour comparing to the shortest path. In order to allow for better discussion,
Figure 22 additionally emphasizes the impact of the skip_feasible parameter. As
it can be seen from the table, the parameter seems to have a huge impact on the
quality of the result like the length differences between the found paths for higher
values of skip_feasible.

Figure 21 An example for the RR problem where the Penalty approach performed badly.
Setting: source=40955, target=54599, ε = 1, γ = 0, α = 0.5, πf = 0.04,
number of paths = 2, skip_feasible = 90.
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Figure 22 Understanding the impact of the skip_feasible parameter to the quality of
results. Running times in ms.

Taking the same source and target node as in the example in Figure 21, Figure 23
shows more alternative paths. What can be observed are the small hops in the
alternative routes. This is due to the implementation explained in Chapter 4. Fur-
thermore, considering more alternative paths than only the first one, the results for
this example could not have been better, as the alternative routes are also over-
lapping near the source and target. Nevertheless, the skip_feasible parameter is
responsible for the example in Figure 21 and more alternative paths can lead to
better results for the RR problem.
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Figure 23 Penalty algorithm: Other alternatives can lead to better results for the RR
problem. Setting: source=40955, target=54599, ε = 2, γ = 0, α = 0.5, πf =
0.04, number of paths = 20, skip_feasible = 70.

6.4 Summary

The practical evaluation of the running time of the Penalty algorithm and the qual-
ity of the results gives a better understanding of the algorithm’s weaknesses and
ways to improve it. In detail, the running time of the algorithm highly depends on
the feasibility check and the skip_feasible parameter. Further, the quality of the
results also depends on the skip_feasible parameter. In summary, the running time
of the algorithm seems to be good enough for taking the Penalty approach as a
basis for RR including further improvements. The quality of the paths is sufficiently
good. The results from the practical suitability study are confirmed by the theo-
retical suitability study. Additionally, the Penalty algorithm is highly adaptable.
Therefore, the algorithm is suited for the RR problem. Furthermore, many ways to
improve the route quality and efficiency of the algorithm exist.
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Improved Penalty Algorithms
CHAPTER 7

Taking the results concerning the theoretical suitability in Chapter 5 and the practi-
cal suitability in Chapter 6, improved versions of the Penalty algorithms for RR can
be implemented. First, Contraction Hierarchies (CH) are introduced as a speed-
up technique for shortest path queries [13]. Afterwards, an improved version of
the Penalty algorithm for RR is presented including various performance improve-
ments. Additionally, improvement suggestions from Section 5.3.2 are included in
the implemented algorithms.

7.1 Contraction Hierarchies

The main idea of Contraction Hierarchies is a preprocessing of the graph in order to
speed up the Dijkstra algorithm. Therefore, Geisberger et al. [13] have introduced
a preprocessing step that keeps shortest path distances between all nodes. The
following terms are necessary for the preprocessing step:

• Shortcuts : Shortcuts are added to a graph as special edges. Shortcuts share
the same properties as edges but are labeled differently to distinguish them
from normal edges. For shortest path queries on a modified graph including
shortcuts, shortcuts are treated as normal edges. For CH, shortcuts are added
whenever a node contraction changes the shortest path length between two
remaining nodes. Then, a shortcut is added between the two affected nodes
with an edge weight of the original shortest path length.

• Node contraction: If a node is contracted, the node and all incident edges are
removed from the graph. This possibly affects other properties of nodes like
the node degree.

• Rank : The rank of a node is determined by the number of nodes already
contracted in a graph. In order to assign a rank for each node, all nodes have
to be contracted.

• Edge difference (ED): The edge difference is used to decide which node to
contract next. ED for node v is calculated as follows:
ED(v) = −(# outgoing edges of v +# incident incoming edges of v) +
# of shortcuts to add if removing v
The ED tries to sort the nodes of a graph by their importance in the graph.
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The number of shortcuts that are added if node v is removed can be determined
by simulating the removal of node v and checking possible affected shortest
path lengths between all remaining node pairs.

Instead of always checking all node pairs in a graph for affected shortest path lengths,
it suffices to check all neighboring nodes of the current node v. This heavily speed
ups the preprocessing step. In the preprocessing step itself, all edge differences are
calculated in a first step and are stored in a priority queue. The lower the ED of
a node, the less important is the node in the graph. In order to keep the number
of inserted shortcuts low (roughly the number of edges), the least important node
according to the ED is selected to be contracted next. The contraction possibly
leads to updates of the ED of neighboring nodes. This step of node contraction is
repeated until an empty graph is left.
Then, a graph including node ranks and all shortcuts can be returned. This slightly
modified graph is used for CH queries.

7.1.1 Queries

For CH queries, the graph resulting from the peprocessing step is used. We further
define upward and downward edges/shortcuts. Let r(v) be the rank of node v.

• upward edge/shortcut : For an upward edge/shortcut e = (v, w), it holds that
r(v) ≤ r(w).

• downward edge/shortcut : For a downward edge/shortcut e = (v, w), it holds
that r(v) > r(w).

In order to perform a CH query from start node s to target node t, a bidirectional Di-
jkstra variant is used where one run starts from s and the other one from t. Further-
more, the run starting from s is restricted to only consider upward edges/shortcuts.
The run starting from t only considers downward edges/shortcuts in the graph.
The correctness proof is omitted but given in [13]. Additionally, Geisberger et al.
show that more engineering in the basic CH algorithm leads to way better running
times [13]. For this work, the standard implementation as explained above is used
including basic engineering like parallelizations in the preprocessing step. As the
path found by the algorithm can contain shortcuts, the contracted edges of a short-
cut have to be tracked in order to support fast unpacking and returning of a path
consisting only of edges without shortcuts.

7.2 Performance-oriented Penalty Algorithm

Apart from CH and a bidirectional Dijkstra variant as an improvement for shortest
path computations, parallelization as a running-time-shortening method is imple-
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mented. In Algorithm 1 it is quite obvious that parallelization is only applicable
in the feasibility check. Here, however, the load can be nicely balanced over the
available cores.
In addition, the proposed solution in Section 5.3.2 for the feasibility check (using
ALT to estimate shortest path distances) is outperformed by directly applying CH.
Nevertheless, shortest path estimations and engineering can further improve the
running time of the algorithm. The CH shortest path computation can always be
applied if requests are made on the original graph without penalties. This is the case
in the feasibility check and the initial shortest path computation. For the repeat-
ing shortest path computations in the while-loop in Algorithm 1 on the modified
graph, the (bidirectional) Dijkstra is applied as, in contrast to CH, no preprocessing
is necessary. In the feasibility check, theoretically, the performance gain of the CH
algorithm in comparison to the bidirectional Dijkstra variant is the same. Never-
theless, using CH instead of a bidirectional Dijkstra variant could make a practical
difference.

7.2.1 Data Structures

A good choice of data structures is essential in order to increase the performance
of the implementation. Especially maintaining map and set data structures in the
graph for parent pointers, shortcuts (for CH), and all edges enables fast lookups and
calculations of set differences. Additionally, the priority queues should support fast
insertions and extractions.
If only one data structure is used to store the whole graph with all possible mod-
ifications like in CH, subgraphs can be stored using sub lists or checking whether
(deleted) elements are contained in a set or list. For this work, the aforementioned
approach is chosen combining fast lookups and relatively small space overhead for
supporting e.g. CH.

7.2.2 Alternative Route Quality

Beside the performance improvements, various possibilities exist to improve the
quality of alternative routes. First, γ = 0 is fixed by the problem definition of RR.
Next, ε is a crucial parameter for the quality and number of alternative routes but
highly depends on the use case, whereas πf and α can also influence the alternative
routes. In detail, α is used to penalize incoming edges of nodes lying on the current
found path. Thus, returning to an already found path can be prevented by choosing
a high value for α. This is only relevant if γ > 0. Then, an efficient postprocessing of
the alternative graph has to be developed. This work and the next section focus on
the evaluation of changes of α, ε, and γ. However, changes of γ are just evaluated for
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the running time discussion as the focus of this work does not lie on the development
of an efficient postprocessing of an alternative graph.
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Experimental Evaluation
CHAPTER 8

This chapter contains the evaluation of different versions of the Penalty algorithm
for RR presented in Chapter 7. If not stated otherwise, running times are given
in seconds and distances/lengths in meters. The evaluation is split in a running
time discussion and a quality discussion. Different versions of the Penalty algorithm
result from a basic implementation without improvements, a bidirectional Dijkstra
variant, another with Contraction Hierarchies implemented, and a last one includ-
ing parallelization. Additionally, meaningful combinations of the improvements are
implemented.
Furthermore, various parameter settings are evaluated in order to demonstrate the
flexibility of the algorithm and the impact on running time and quality. First, the
running time is discussed in the following section. Afterwards, the route quality
with different parameter settings is discussed.

8.1 Setup

For the experiments, different parameter settings are used and represented in Ta-
ble 1. These settings are mainly for evaluating impacts of different values for α, γ,
and ε where the first setting includes the default values proposed by Kobitzsch et
al. [18]. The purpose of settings 2 and 4 is to demonstrate a changing route quality
for other values for γ. Nevertheless, γ = 0 is fixed for RR.
A higher value for α does not make sense because with a higher value the risk of
missing routes is higher. For ε, the value highly depends on the use case for RR. In
order to give an overview of the impact on the running times, ε ∈ {0.25, 0.5, 0.75}
are chosen.

ID γ α ε
1 0 0.5 0.5
2 0.2 0.5 0.5
3 0 0.3 0.5
4 0.2 0.3 0.5
5 0 0.5 0.25
6 0 0.5 0.75
7 0 0.3 0.75

Table 1 Different parameter settings for the experiments concerning γ, α, and ε.
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In addition to the input parameter settings for the Penalty algorithm, all combi-
nations of improvements (CH, bidirectional Dijkstra, parallelization) are executed
for every choice of Table 1 for every node pair. Additionally, the number of paths
to be found is set to one, two, and three and the algorithm can terminate earlier
if the number of alternative paths is reached or the convergence criterion is met in
the while-loop in Algorithm 1. For the experiments, 1560 node pairs (random start
node and random target node) are chosen and the corresponding metrics collected.

For the next evaluation steps, we fix various parameters in order to evaluate e.g.
running times in a meaningful way. If a parameter is not fixed, all observations are
included in the evaluation, e.g. if ε is not restricted, all values of ε are allowed that
are contained in Table 1.

8.2 Running Time Discussion

As an initial step, the parameter skip_feasible is evaluated. The parameter in-
dicates the number of checks for the uniformly bounded stretch that are skipped.
In Chapter 6 it is already shown that this parameter has a huge influence on the
running time especially for values 2 ≤ skip_feasible ≤ 10. Figure 24a and Fig-
ure 24b emphasize this finding. The combination of both figures indicates that the
feasibility check highly influences the overall running time of the algorithm.
Nevertheless, the goal of this work is to develop an efficient algorithm where such
skips of feasibility checks are not necessary anymore. Thus, the further discussion
focuses on a fixed parameter skip_feasible = 0. First, the default values for RR
are taken to examine the running time of the algorithm. Therefore, γ = 0 is fixed
per definition of RR and α = 0.5 as proposed by Kobitzsch et al. [18]. Figure 25a
shows that the running times are positively correlated to the length of the shortest
path using the default parameter setting. In contrast, the correlation of the average
running time of the feasibility check and the length of the shortest path using the
default parameter setting is not that clear as shown in Figure 25b. But a tendency
to a positive correlation is given. These findings strengthen the intuition and under-
standing of the Penalty algorithm and the points where improvements are sensible.
In detail, higher lengths of the shortest paths lead to more nodes in many cases.
Therefore, the algorithm probably has to perform more feasibility checks.
In order to confirm the tendency from Figure 25b, the length of the shortest path is
not always a necessary indicator. Figure 26a and Figure 26b confirm the tendency
of a positive correlation between the running time of the algorithm and the number
of nodes of the shortest path using the default parameter setting. The number of
nodes of the shortest path is actually a more precise measure. This is reflected
by less outliers than in Figure 26a and Figure 26b compared to Figure 25a and
Figure 25b.
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(a) Parameter skip_feasible in relation to the running time with parameters γ = 0, α = 0.5. The
y-axis represents the running time in seconds and the x-axis the skip_feasible parameter.

(b) Parameter skip_feasible in relation to the average running time for the feasibility check with
parameters γ = 0, α = 0.5. The y-axis represents the average running time in seconds and the
x-axis the skip_feasible parameter.

Figure 24 Evaluation of parameter skip_feasible.
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(a) Evaluation of the running time in relation to the length of the shortest path with parameters
γ = 0, α = 0.5, skip_feasible = 0. The y-axis represents the running time in seconds and the
x-axis the length of the shortest path in meters.

(b) Evaluation of the average running time of the feasibility check in relation to the length of the
shortest path with parameters γ = 0, α = 0.5, skip_feasible = 0. The y-axis represents the
average running time in seconds and the x-axis the length of the shortest path in meters.

Figure 25 Overall running time evaluation with fixed skip_feasible parameter.
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(a) Evaluation of running time in relation to the number of nodes of the shortest path with
parameters γ = 0, α = 0.5, skip_feasible = 0. The y-axis represents the running time in
seconds and the x-axis the number of nodes.

(b) Evaluation of the average running time of the feasibility check in relation to the number of
nodes of the shortest path with parameters γ = 0, α = 0.5, skip_feasible = 0. The y-axis
represents the average running time in seconds and the x-axis the number of nodes.

Figure 26 Overall running time evaluation with fixed skip_feasible parameter in relation
to the number of nodes for the shortest path.
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Another interesting measure is the maximum and average running time of the imple-
mented algorithms given fixed input parameters of the algorithm for a comparative
evaluation. As it can be seen in Table 2, Table 3, and Table 4, the combination
of all three optimizations performs best. Additionally, Table 3 emphasizes the im-
pact of the bidirectional Dijkstra where Table 2 and Table 4 focus on the impact
of CH and parallelization. The combination of CH and parallelization seems to be
a strong improvement. The parallelization also impacts the running time especially
for the combination without CH and the bidirectional Dijkstra. As the last row in
Table 4 indicates, CH is the most important improvement concerning running time
in comparison to parallelization and the bidirectional Dijkstra.

CH Bidirectional
Dijkstra

Parallelization Max running
time (seconds)

true true true 24.243
false true true 74.763
false true false 110.44
true true false 24.249

Table 2 Maximum running times evaluation with parameters γ = 0, α =
0.5, skip_feasible = 0, ε = 0.5.

CH Bidirectional
Dijkstra

Parallelization Average
running time
(seconds)

true true true 0.953
false true true 1.193
false true false 1.802
true true false 0.976

Table 3 Average running times evaluation with parameters γ = 0, α = 0.5, ε =
0.5, skip_feasible = 0.

CH Bidirectional
Dijkstra

Parallelization Average
running time
(seconds)

true false true 1.037
false false true 1.296
false false false 1.994
true false false 1.06

Table 4 Average running time evaluation with parameters γ = 0, α = 0.5, ε =
0.5, skip_feasible = 0.
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Figure 27 Evaluation of the running time in relation to ε with parameters γ = 0, α =
0.5, skip_feasible = 0 and with CH, bidirectional Dijkstra, and paralleliza-
tion. The x-axis represents the running time in seconds and the y-axis ε.

Apart from investigating the running time in dependence of improving techniques
like CH, the running times further depends on the input parameters. Therefore, we
fix the observations to the one where CH, bidirectional Dijkstra, and parallelization
is applied because the figures above have shown that this combination performs
best. As Figure 27 and Figure 28 indicate, higher values for ε and lower values for
γ increase the running time of the algorithm. As ε specifies the maximum length
of alternative routes, it is sensible that higher values for ε lead to higher running
times. As the algorithm is designed to terminate after a given number of alternative
paths have been found, a higher value for γ leads to faster results.
For the input parameter α, no difference in the running time can be observed in
Figure 29. For α = 0.3, some outliers with high running times can be detected but
apart from that no tendency as for ε and γ can be detected.
Figure 30 completes the evaluation of the impact of the length of the shortest path to
the running time of the algorithm. A positive correlation can be confirmed including
all improvements and an adequate parameter setting required for RR (γ = 0). Fur-
thermore, this figure indicates that no parameter setting exists where the positive
correlation is not given. This extends the generality of the claim in comparison to
Figure 25a and allows for further experiments with different input parameters.
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Figure 28 Evaluation of the running time in relation to γ with parameters ε = 0.5, α =
0.5, skip_feasible = 0 and with CH, bidirectional Dijkstra, and paralleliza-
tion. The x-axis represents the running time in seconds and the y-axis γ.

Figure 29 Evaluation of the running time in relation to α with parameters γ = 0, ε =
0.5, skip_feasible = 0 and with CH, bidirectional Dijkstra, and paralleliza-
tion. The x-axis represents the running time in seconds and the y-axis α.
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A possibly misleading correlation is presented in Figure 31.What can be observed
is that the convergence criterion in the Penalty algorithm seems to be reached later
the less paths are found. As the algorithm terminates as soon as the number of
specified paths are found, this could explain the faster running times for three found
paths and the slower running times for only one path. But the dataset does not
contain that many node pairs where three paths are found. Therefore, no reliable
evidence can be found for a correlation between the number of found paths and the
running time.

Figure 30 Evaluation of the length of the shortest path in relation to the running time
with parameters γ = 0, skip_feasible = 0 and with CH, bidirectional Dijkstra,
and parallelization. The y-axis represents the running time in seconds and the
x-axis the length of the shortest path in meters.
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Figure 31 Evaluation of the number of found alternative paths in relation to the running
time with parameters γ = 0, skip_feasible = 0 and with CH, bidirectional
Dijkstra, and parallelization. The y-axis represents the running time in seconds
and the x-axis the number of alternative paths.

An unsurprising finding is shown in Figure 32: a positive correlation between the
number of feasibility checks and the overall running time of the algorithm with
optimal parameter setting for RR. This implies that performance improvements are
well-reflected in an improved running time.
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Figure 32 Evaluation of the number of feasibility checks in relation to the running time
with parameters γ = 0, skip_feasible = 0 and with CH, bidirectional Dijkstra,
and parallelization. The y-axis represents the running time in seconds and the
x-axis the number of feasibility checks.

This completes the running time discussion. The sensible parameter settings and
impacts of input parameters and improving techniques are examined concerning the
running time of the algorithms.

8.3 Quality Discussion

The quality of the results of the Penalty algorithm and its variants is an important
measure for RR. First, parameter γ highly influences the number of paths that are
found. This is shown in Figure 33a and Figure 33b, where for γ = 0 (for RR) the
number of paths is much lower than for γ = 0.2.

As γ = 0 is fixed for RR, for the remaining parameters it has to be examined whether
the number of paths differs for different parameter settings. Thus, Figure 34a and
Figure 34b indicate that lower values for parameter α could lead to more paths, as
incoming edges of nodes laying on the current found path are not penalized that
hard. Additionally, for α = 0.3 the number of results with two paths is higher than
for α = 0.5.
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Furthermore, higher values for ε result in a higher chance to find more paths as ε
indicates the maximum length of an alternative path. This is shown in Figure 35.

(a) Evaluation of number of found paths for γ = 0.2.

(b) Evaluation of number of found paths for γ = 0.

Figure 33 Evaluation of parameter γ for number of found paths for α = ε =
0.5, skip_feasible = 0 with CH, bidirectional Dijkstra, and parallelization.
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(a) Evaluation of number of found paths for α = 0.3.

(b) Evaluation of number of found paths for α = 0.5.

Figure 34 Evaluation of parameter α for number of found paths for ε = 0.5, γ =
0, skip_feasible = 0 with CH, bidirectional Dijkstra, and parallelization.
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(a) Evaluation of number of found paths for ε = 0.25.

(b) Evaluation of number of found paths for ε = 0.5.

Figure 35 Evaluation of parameter ε for number of found paths for α = 0.5, γ =
0, skip_feasible = 0 with CH, bidirectional Dijkstra, and parallelization.



54 8.3. QUALITY DISCUSSION

Figure 36 Evaluation of number of found paths for ε = 0.75 and α = 0.5, γ =
0, skip_feasible = 0 with CH, bidirectional Dijkstra, and parallelization..

In addition, the first row in Table 5 examines the mean of length differences if three
paths are found. These values suggest that the shortest path and the first alterna-
tive should be preferred as a solution for RR over the first and second alternative
path. Besides, Table 5 gives an intuition about the length of the alternatives that
are found without any restrictions of the number of paths but limited γ (second
row). It can be seen that the first alternative is roughly a third longer than the
shortest path. This seems to be a quite good result for RR.
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γ Number of
paths (input
parameter)

Mean of
length

difference
shortest and

first
alternative
(meters)

Mean of
length

difference
first

alternative
and second
alternative
(meters)

Average
shortest

path length
(meters)

0 3 6694.75 7345.75 27307 (only
two

observations)
0 {1, 2, 3} 8417.80 7345.75 26927.59

{0, 0.2} {1, 2, 3} 3234.28 3399.36 31847.32

Table 5 Evaluation of length differences for skip_feasible = 0 with CH, bidirectional
Dijkstra, and parallelization.

If γ is not restricted to equal zero (γ ∈ {0, 0.2}), the average length differences are
very low compared to the average shortest path lengths as presented in the third
row in Table 5. Nevertheless, these results might not be valid solutions for RR.
However, this finding could be another starting point for further research.

Another hypothesis to check is the following: the length of the shortest path is
correlated to the length of the first alternative path. This would imply that the
algorithm would not find good solutions for RR for longer routes. Fortunately,
Figure 37 disproves the hypothesis as a uniform distribution can be seen.
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Figure 37 Evaluation of the length of the shortest path in relation to the relative
markup of the shortest path to the first alternative with parameters γ =
0, skip_feasible = 0 and with CH, bidirectional Dijkstra and parallelization.
The y-axis represents the relative markup and the x-axis the length of the
shortest path in meters.

8.3.1 Visualizations

For the following visualizations of solutions to RR, the red path is the shortest path
and the blue paths are alternative paths found by the Penalty algorithm for RR.
As mentioned before, different settings for input parameter α can lead to different
results. Figure 38 clearly demonstrates this case. For α = 0.5 in Figure 38a, the
incoming edges of nodes laying on the the shortest path are penalized harder. This
leads to a worse solution for RR compared to Figure 38b.
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(a) α = 0.5, further setting: source=40955, target=54599, ε = 1, γ = 0, πf = 0.04, number of
paths = 3, skip_feasible = 0.

(b) α = 0.3, further setting: source=40955, target=54599, ε = 1, γ = 0, πf = 0.04, number of
paths = 3, skip_feasible = 0.

Figure 38 Different values for α lead to different results.

Furthermore, Figure 39 demonstrates the difference of results for varying parameter
settings. First, Figure 39a and Figure 39c do not show the same results. Concerning
RR, the best solution would be to take the shortest path and the first alternative
shown in Figure 39b. Besides, Figure 39a has a good parameter setting concerning
running time, as the discussion above showed that variations of α do not impact the
running time whereas the variation of ε does. For Figure 39c, ε has to be set pretty
high to get two alternative routes. If ε is not varied as in Figure 39b, the second
alternative will not be found.
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(a) α = 0.3, ε = 0.5

(b) α = 0.5, ε = 0.5

(c) α = 0.5, ε = 0.75

Figure 39 Different parameter settings (α and ε) lead to different outcomes. Further
setting: source=7565, target=3696, γ = 0, πf = 0.04, number of paths = 3,
skip_feasible = 0.
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8.4 Summary of Findings

One of the most interesting and surprising outcome of the running time and quality
discussion is the setting of input parameter α. For α = 0.5 or α = 0.3, no differ-
ences in the running time can be detected but the route quality has the potential to
become better for lower values of α. As the penalization of incoming edges of nodes
laying on the shortest path seems to have no impact on the running time, paths
near the shortest path are not penalized that hard.
Generally, the running time is best if all possible improvements (CH, bidirectional
Dijkstra, and parallelization) are applied. The choice of ε highly influences the run-
ning time and also the number of alternative paths that can be found. Furthermore,
γ has an impact on the running time and result of the algorithm too. Nevertheless,
for RR it is fixed to γ = 0 but can be a starting point for further improvements
including an extensive selection process in the alternative graph.
The running time and quality discussion shows that the adapted Penalty approach
is able to solve the RR problem with reasonably good results. Furthermore, the ab-
solute running times demonstrate the applicability of this algorithm for real-world
use cases. As there are many starting points for improvements (also concerning the
programming language and CH), the duration for RR requests can be improved.
Thus, a real-world applicability is possible concerning the running time. The penal-
ization of edges seems to be a working approach to approach the RR problem using
a heuristic algorithm.



60

Conclusion and Future Work
CHAPTER 9

Starting from the definition of RR as a fairly new special case of Alternative Route
Planning, the time complexity is shown to be weakly NP-hard. Thus, an efficient
exact algorithm does not exist. Therefore, it is evaluated whether the Penalty algo-
rithm proposed by Kobitzsch et al. suits the RR problem. The extensive theoretical
and practical suitability study indicates that a variant of the Penalty approach could
lead to quite good results concerning running time and quality of results.
Next, further improvements are included in the Penalty algorithm, namely Contrac-
tion Hierarchies, the bidirectional variant of the Dijkstra algorithm, and paralleliza-
ton. Applying these techniques together with different parameter settings results
in better running times and multiple algorithmic approaches for RR based on the
Penalty algorithm. Concerning the quality of routes, the input parameters of the al-
gorithm (namely α, γ, and ε) can change the outcomes. πf determines the factor for
penalizing the edges of the current shortest path. This parameter does not change
the outcoming alternative routes but can influence the running time. For this work,
this parameter is set as proposed by Kobitzsch et al. and not further evaluated.
The choice of ε highly depends on the use case. If the definition of RR is taken as
it is, ε should be unbounded. As this is not possible for the Penalty algorithm in its
current form, the value of ε is considered to be use case specific. Nevertheless, the
evaluation has shown that a value of 0.25 ≤ ε ≤ 0.5 could be reasonable. For the
RR problem, γ = 0 is fixed per definition. The evaluation in the previous chapter
indicates a huge impact of γ to the running time and quality. Thus, further research
could use it as a starting point. Furthermore, α turns out to be a critical parameter
for finding a solution for RR. A value of α = 0.3 provides better results compared
to α = 0.5. Additionally, the lower value of α does not really influence the running
time. Therefore, α ≤ 0.3 seems to be a good choice for RR. This completes this
work and answers the research questions.

Since RR is a new research topic, there exists further possible future work. If one
sticks with the penalty approach, additional adaptions of the input parameter can
be examined. If α is assigned a lower value, incoming edges of nodes laying on the
current found path are not penalized that hard. This means, that possible more
routes could be found that are near the (shortest) path and therefore a better solu-
tion for RR. But the stopping criterion might be reached later, as the convergence is
possibly slower. For future work, low values α ≤ 0.3 can be examined whether they
lead to better results. Especially in combination with parameter ε, both parameters
highly influence the quality of the approximation of RR.
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Furthermore, if it is possible to define the point where two found routes are a good
solution for RR, it might be a good choice to stop the algorithm earlier. In addition,
further engineering in the shortest path algorithms like CH and another program-
ming language than Java can improve the running time heavily to enable real-world
applications of RR.
As the RR problem requires multiple optimizations, it may be necessary to e.g. pre-
fer Condition (3) over Condition (1). Then it would be sensible to e.g. add a small
detour for the shortest path so the length difference is minimized and the lengths of
the paths do not exceed some given limit.
Finally, the algorithmic approaches of Chondrogiannis et al. [6] may also be adapt-
able for the RR problem.
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